Recycling Waste Polyurethane as a Carbon Resource in Ironmaking*

J. R. Dankwah and W. K. Buah
University of Mines and Technology, P.O. Box 237, Tarkwa, Ghana

Abstract

Globally, major avenues available for dealing with waste Poly-Urethane (PU) are disposal at landfill sites and incineration. However, PU contains high levels of carbon and hydrogen that can be recovered for use as reductant in metal extraction processes. In this work the use of post-consumer PU as reductant for the production of metallic iron from iron oxide was investigated in a horizontal tube furnace through the composite pellet approach. Composite pellets were formed from mixtures of iron oxide and post-consumer PU. The iron oxide-PU composites were heated from room temperature to 1200 °C and then between 1200-1600 °C in a continuous stream of pure argon and the off gas was analysed continuously using an infrared (IR) gas analyser. Elemental analyses of samples of the reduced metal were performed chemically for its oxygen content using a LECO oxygen/nitrogen analyser. The extent of reduction was then determined at two temperatures 1200 °C and 1550 °C. Gas emission studies revealed the emission of large volumes of the reductant gas CO along with CO₂. It is further demonstrated that post-consumer PU is effective at reducing iron oxide to produce metallic iron with complete reduction achieved in less than 4 min at 1550 °C.

Keywords: Polyurethane, Composite Pellets, Infrared gas Analyser, LECO Carbon/Sulphur Analyser

1 Introduction

Globally, major avenues available for dealing with Poly-Urethane (PU) are disposal at landfill sites and incineration. However, PU contains high levels of carbon and hydrogen that can be recovered for use as reductant in metal extraction processes. In Ghana, recycling figures for waste PU are not available, although it is believed that significant amounts of PU are produced annually. Conventional methods for recycling PU have concentrated largely on disposal at landfill sites. Decreasing landfill space along with increasing landfill costs call for novel ways for its recycling.

Large amounts of waste PU are generated annually from various households, as part of medical waste from various hospitals and constitute a significant portion of automotive shredder waste.

Fig. 1 Soft Polyurethane Foam

The interest in getting carbon from various sources has been extended to household items like bowls made from bakelite, melamine and compact discs (CDs) [Kongkarat et al., 2011; Mansuri et al., 2013; Nath et al., 2012; Rajarao et al., 2014a; Rajarao et al., 2014b]. However, not much is known about the use of PU as reductant in iron and steelmaking technologies. In the present work, the potential for producing metallic iron from hematite using waste PU as a reducing agent is investigated under inert atmosphere in a custom made horizontal tube furnace.

2 Resources and Methods Used

2.1 Materials

Commercial grade PU (pulverised to 125 µm using a ring mill) was employed in this study as carbonaceous material. The chemical composition

*Manuscript received March 23, 2017
Revised version accepted June 22, 2017
https://dx.doi.org/10.4314/gm.v17i1.8

https://dx.doi.org/10.4314/gm.v17i1.8

Vol. 17, No. 1, June, 2017
(wt %) and the ash analyses as determined at the Analytical Centre, UNSW, Australia are given in Tables 1. Pulverised reagent grade iron oxide (assaying 96.89% Fe₂O₃) was obtained from Ajax FineChem Pty Ltd, Taren Point, NSW, Australia; its composition (determined by XRF analysis) is given in Table 2.

Table 1 Elemental Analysis of Polyurethane

<table>
<thead>
<tr>
<th>Component</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>N</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition wt %</td>
<td>65.6</td>
<td>4.9</td>
<td>20.5</td>
<td>9.0</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2 Elemental Analysis of Fe₂O₃

<table>
<thead>
<tr>
<th>Component</th>
<th>Composition (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>96.89</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.445</td>
</tr>
<tr>
<td>CaO</td>
<td>0.0225</td>
</tr>
<tr>
<td>MnO</td>
<td>0.020</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.0115</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.134</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.257</td>
</tr>
<tr>
<td>LOI</td>
<td>2.22</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>

Pulverised carbonaceous materials were prepared from PU using a Cutting Mill Pulverisette 15 (Fig. 2), equipped with a cutting rotor, sieve inserts and grinding chamber. Pulverised carbonaceous materials used for the reduction studies were in the size range -470 + 450 µm.

2.2 Reduction Studies

Spherical pellets were formed from pulverised iron oxide and polyurethane (~ 30 wt %) with about 2 wt % flour as binder and appropriate amount of water without flux addition (Fig. 3). After curing and drying for 96 hours the composite pellets were then ready for firing in a resistance heated horizontal tube furnace (Fig. 4).

Fig. 3 Spherical Pellet of Fe₂O₃-PU Composite

Fig. 4 Horizontal Tube Furnace used for Reduction Studies

The furnace was purged continuously with argon gas (99.995% purity) to ensure an inert atmosphere. The furnace was preheated to the desired temperature and the sample was inserted; gas measurement commenced immediately after insertion and continued for 1800 s. No appreciable change in gas composition was observed beyond 1800 s. Reacted carbonaceous material/iron oxide samples were quenched by rapidly withdrawing the tray from the hot zone into the cold zone of the furnace. Particles of reduced iron metal, which were clearly visible to the naked eye, were removed by a magnetic screw driver and its oxygen content was determined by LECO Nitrogen/Oxygen analyser (model TC-436 DR 602-500-600, LECO Corporation, Michigan, USA) for its O content.

3 Results and Discussion

3.1 Reduction Studies

3.1.1 Gas Generation Behaviour during Heating of Fe₂O₃-PU at 1200 °C and 1500 °C

The gas generation behaviour in the preheated furnace at 1200 °C is illustrated in Fig 5. The major component of the offgas is CO with a maximum concentration of about 7.13 vol %; some CO₂ is also observed.
Temperature appears to have a very significant effect on gas generation, especially CO as illustrated in Fig. 6. The maximum concentration of CO increased from about 7.13 vol % at 1200 °C to about 23.0 vol % at 1550 °C, implying that reduction (oxygen removal) is influenced by temperature. The effect of temperature on CO₂ is rather the reverse of what was observed for CO, judging from the area under the graphs of CO₂ in Figs (5 and 6). This is explained by the consumption of CO₂ by solid carbon through the highly endothermic Boudouard reaction (Equation 1), which is favoured at high temperatures (Knacke et al., 1991):

\[\text{CO}_2 + C = 2 \text{CO} \]
\[\Delta G = +170700 - 174.57 T \text{ J} \] \hspace{1cm} (1)

Another possible reaction that could contribute to the observed surge in the concentration of CO at 1550 °C is the water gas reaction illustrated in Equation 2 (Knacke et al., 1991):

\[\text{H}_2\text{O} + C = \text{H}_2 + \text{CO} \]
\[\Delta G = +134700 - 142.57 T \text{ J} \] \hspace{1cm} (2)

Possible reactions for the reduction of Fe₂O₃ to Fe are:

\[\text{Fe}_2\text{O}_3 + 3\text{C} = 2\text{Fe} + 3\text{CO} \] \hspace{1cm} (3)
\[\text{Fe}_2\text{O}_3 + 3\text{CO} = 2\text{Fe} + 3\text{CO}_2 \] \hspace{1cm} (4)
\[\text{Fe}_2\text{O}_3 + 3\text{CH}_4 = 2\text{Fe} + 3\text{CO} + 6\text{H}_2 \] \hspace{1cm} (5)
\[\text{Fe}_2\text{O}_3 + 3\text{H}_2 = 2\text{Fe} + 3\text{H}_2\text{O} \] \hspace{1cm} (6)

The plots of ln(P\text{CO}/P\text{CO}_2) versus time are shown in Fig 9 and Fig 10 at 1200 °C and 1550 °C respectively. The plots are asymptotic at both temperatures, with the plot at 1200 °C approaching 1.3 whilst that at 1550 °C approaches 3.0. This implies that the Boudouard reaction has a significant influence over the reduction process at both temperatures.
3.1.2 Nature of Metal Produced

Samples of reduced metal were obtained at all temperatures. However, separation of the metal from the slag depended on the temperature of the furnace. At 1200 °C, metal-slag separation was not attained, as illustrated in Fig. 11.

However, when the temperature was increased to 1550 °C a clear separation of reduced metal from the slag layer was observed, as shown in Fig. 12. A LECO O/N analyser revealed a reduction in oxygen content from 28.6 wt % to 0.0532 wt, corresponding to about 99.80 % reduction.

3.3 Extent of Reduction

The extent of reduction was calculated from the oxygen content of the reduced metal produced from the reaction of the iron oxide with PU. The results are shown in Figs 13 and 14 for reduction at 1200 °C and 1550 °C, respectively. At 1200°C, PU is able to reduce Fe₂O₃, attaining an extent of reduction of about 64%, after 20 min. As the reduction temperature increased from 1200 °C to 1550 °C, reduction essentially reached completion in less than 4 min.

4 Conclusions

The reduction of iron oxide (Fe₂O₃) has been investigated using carbonaceous material prepared from waste PU as reductant. Major findings of the investigation are:

(i) Waste polyurethane foam (PU) is a potential source of carbonaceous materials for iron oxide reduction;

(ii) CO emissions showed an increase with an increase in temperature;

(iii) At 1200 °C extent of reduction could only reach about 64 %. However, complete reduction of iron oxide was observed in less than 4 min of reaction when the temperature was increased to 1550 °C.

Acknowledgements

Part of the analyses for the investigation was conducted at the School of Materials Science and Engineering, UNSW, Sydney, Australia. The authors are grateful to the various authorising bodies for the assistance received.
References

Authors

James R. Dankwah obtained his PhD from the School of Materials Science and Engineering, UNSW-Australia, MSc (Process Metallurgy) from the Norwegian University of Science and Technology and BSc (Metallurgical Engineering) from the Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. His current research areas include iron and steelmaking, high-temperature metallurgical processes, utilisation of waste polymers in metal extraction processes and recycling plastic and agricultural waste into building blocks materials for affordable housing for rural folks.

W. K. Buah holds a PhD in Waste Processing Engineering from the University of Leeds, Leeds, UK and a Master of Science Degree in Mineral Processing Engineering from the Mining Institute of Krivoy Rog, Krivoy Rog, Ukraine. He is currently an Associate Professor at the University of Mines and Technology, Tarkwa, Ghana. His current research interests include mineral processing and extractive metallurgy, waste management, pyrolysis-gasification of wastes and biomass to produce valuable products, including activated carbon for gold adsorption. He is a member of the Society for Mining, Metallurgical and Exploration Engineers (SME) and the Chattered Institute of Waste Management, UK.